Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Guang-Hua Cui ${ }^{\text {a }}$ and Jian-Rong Li ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of
China, and ${ }^{\text {b }}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: tscghua@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.073$
$w R$ factor $=0.205$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(1,10-phenanthroline- $\kappa N, N^{\prime}$)manganese(II) bis(perchlorate) chloroform disolvate

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{6}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$, the $\mathrm{Mn}^{\mathrm{II}}$ ion is chelated by three 1,10 -phenanthroline molecules in a twisted octahedral coordination geometry. In the crystal structure, there are intermolecular $\pi-\pi$ interactions between adjacent phenanthroline rings.

Comment

There has been increasing interest in the mechanism of the racemization of tris-phenanthroline metal complexes in solid and solution phases (Gillard \& Mitchell, 1988; Fujiwara \& Yamamoto, 1980). In considering such mechanisms, a fundamental requirement is knowledge of the crystal structure. With these compounds, some basic information as to phase identification and a proper understanding of the role played by water in determining the structure have been reported (Gillard et al., 1989). Here, we report the structure of the title complex, $\left[\mathrm{Mn}(L)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$, (I), where L is $1,10-$ phenanthroline. This complex probably offers some useful information on the mechanism of the racemization of trisphenanthroline metal complexes lacking water of crystallization.

X-ray structure analysis reveals that (I) is an ionic monomeric $\mathrm{Mn}^{\text {II }}$ complex (Fig. 1) with solvent chloroform molecules. The coordination geometry around the $\mathrm{Mn}^{\mathrm{II}}$ centre is twisted (from trigonal prismatic towards regular octahedral) about the quasi- C_{3} axis, approaching the octahedral extreme. The $\mathrm{Mn}-\mathrm{N}$ bond distances lie in a narrow range from 2.277 (4) to 2.293 (3) \AA.

In addition, there are $\pi-\pi$ interactions between the centroids of adjacent phenanthroline rings. For $C g 1$ (the centroid of ring $\mathrm{C} 16-\mathrm{C} 24$) and $C g 1 A$ (ring $\mathrm{C} 16 A-\mathrm{C} 24 A$) [symmetry code $(A):-x,-y, 1-z$], the centroid-centroid distance is 3.739 (3) \AA and the dihedral angle is 18.41 (3) ${ }^{\circ}$. For $C g 2$ (C28-C36) and Cg2B (C28B-C36B) [symmetry code (B): $1-x,-y,-z]$, the centroid-centroid distance is 3.758 (3) \AA and the dihedral angle is $18.61(3)^{\circ}$.

Received 16 December 2004
Accepted 17 January 2005 Online 22 January 2005

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

Complex (I) was prepared by reacting $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.361 \mathrm{~g}$, $1 \mathrm{mmol})$ and 1,10 -phenanthroline $(0.593 \mathrm{~g}, 3 \mathrm{mmol})$ in a methanolchloroform (1:1) solution. The mixture was stirred at room temperature for 30 min and then filtered. Pale-yellow block crystals of (I) were obtained from the filtrate after 10 d . Yield $0.216 \mathrm{~g}, 21 \%$ (based on Mn).

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{6}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=1033.19$
Triclinic, $P \overline{1}$
$a=12.642$ (3) A
$b=12.987$ (3) \AA
$c=14.501$ (3) A
$\alpha=86.15$ (3) ${ }^{\circ}$
$\beta=75.77$ (3) ${ }^{\circ}$
$\gamma=70.17(3)^{\circ}$
$V=2170.4(9) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.581 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3351 \\
& \quad \text { reflections } \\
& \theta=6.7-54.2^{\circ} \\
& \mu=0.86 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.28 \times 0.28 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID	7909 independent reflections
\quad diffractometer	4953 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.037$
Absorption correction: multi-scan	$\theta_{\max }=25.5^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-15 \rightarrow 15$
$T_{\min }=0.796, T_{\max }=0.808$	$k=-15 \rightarrow 15$
13078 measured reflections	$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.205$
$S=1.00$
7909 reflections 550 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1288 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.67 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.64 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Mn1-N1	$2.292(4)$	Mn1-N4	$2.277(4)$
Mn1-N2	$2.284(4)$	Mn1-N5	$2.293(3)$
Mn1-N3	$2.291(3)$	Mn1-N6	$2.282(3)$
N1-Mn1-N5	$158.9(1)$	N4-Mn1-N3	$73.4(1)$
N2-Mn1-N1	$73.8(1)$	N4-Mn1-N5	$102.5(1)$
N2-Mn1-N3	$93.0(1)$	N4-Mn1-N6	$99.2(1)$
N2-Mn1-N5	$94.4(1)$	N6-Mn1-N1	$91.3(1)$
N3-Mn1-N1	$105.4(1)$	N6-Mn1-N2	$98.3(1)$
N3-Mn1-N5	$92.4(1)$	N6-Mn1-N3	$162.0(1)$
N4-Mn1-N1	$93.6(1)$	N6-Mn1-N5	$72.8(1)$
N4-Mn1-N2	$158.6(1)$		

All H atoms were placed in calculated positions and included in the final cycles of refinement in the riding model. For aromatic H atoms, $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. For chloroform H atoms, $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank Hebei Polytechnic University and Nankai University for supporting this work.

References

Fujiwara, T. \& Yamamoto, Y. (1980). Inorg. Chem. 19, 1903-1907.
Gillard, R. D. \& Mitchell, S. H. (1988). Polyhedron, 7, 1175-1186.
Gillard, R. D., Mitchell, S. H. \& Robinson, W. T. (1989). Polyhedron, 8, 26492655.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

